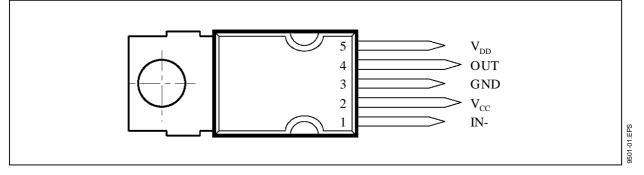


TDA9501

AC COUPLING HIGH VOLTAGE VIDEO AMPLIFIER

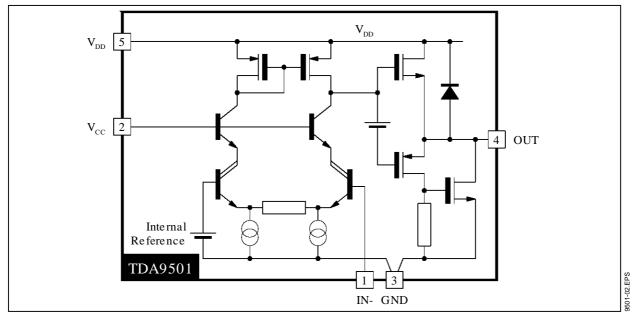
ADVANCE DATA


- BANDWIDTH : 40MHz TYPICAL
- RISE AND FALL TIME : 9ns TYPICAL
- SUPPLY VOLTAGE : 90V
- FLASH-OVER PROTECTION
- POWER DISSIPATION : 2.3W
- ESD PROTECTED

DESCRIPTION

The TDA9501 includes a video amplifier designed with a high voltage bipolar/CMOS/DMOS technology (BCD). It drives directly one cathode of a monitor and is protected against flashovers. It is available in pentawatt package.

PIN CONNECTIONS


PIN CONFIGURATION

Pin N	Symbol	Function	
1	IN-	Input of the amplifier	
2	VCC	Low Voltage Power Supply	7
3	GND	Also connected to the heatsink]
4	OUT	Output driving the cathode	I BI
5	VDD	High Voltage Power Supply	9501-(

June 1996

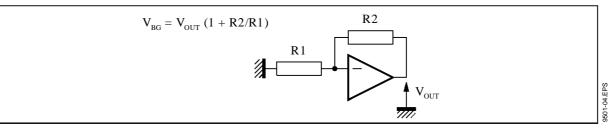
This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vout, Vdd	Supply High Voltage (Pins 4-5)	100	V
Vcc	Supply Low Voltage (Pin 2)	20	V
I _{OD} I _{OG}	Output Current to V _{DD} (Pin 4) Output Current to Ground (Pin 4)	protected 80	mA
lj	Input Current (Pin 1)	50	mA
Tj	Junction Temperature	150	°C
T _{oper}	Operating Ambient Temperature	0, +70	°C
T _{stg}	Storage Temperature	-20, +150	°C

THERMAL DATA


Symbol	Parameter	Value	Unit
R _{th (j-c)}	Junction-Case Thermal Resistance Max.	3	°C/W
R _{th (j-a)}	Junction-Ambient Thermal Resistance Typ.	70	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{DD}	High Supply Voltage (Pin 5)		20		90	V
V _{CC}	Low Supply Voltage (Pin 2)		10	12	15	V
I _{DD}	High Voltage Supply Internal DC Current (without current due to the feedback network)	V _{OUT} = 50V		8	TBD	mA
lcc	Low Voltage Supply Internal DC Current			7.5		mA
V _{BG}	Internal Reference	See Figure 1		3.5		V
dV _{BG} /dV _{CC}	Drift of Reference Voltage versus V _{CC}				TBD	%
dV _{BG} /dT	Drift of Reference Voltage versus Temperature	See Figure 1			TBD	mV/ºC
V _{SATH}	High Output Saturation Voltage (Pin 4)	I _O = -60mA		V _{DD} - 6.5		V
V _{SATL}	Low Output Saturation Voltage (Pin 4)	I _O = 60mA		17		V
BW	Bandwidth at -3dB	$\begin{array}{l} \mbox{Measured on CRT cathodes.} \\ C_{LOAD} = 10 p F, R protect = 10 \Omega, \\ V_{OUT} = 50 V, \ \Delta V_{OUT} = 40 V_{PP}, \\ \mbox{Feedback gain} = 20 \end{array}$		40		MHz
t _R , t _F	Rise and Fall Time	Measured between 10% & 90% of output pulse, $C_{LOAD} = 10$ pF, Rprotect = 10 Ω , $V_{OUT} = 50$ V, $\Delta V_{OUT} = 40$ VpP		9		ns
Go	Open Loop Gain		TBD			dB
I _{IB}	Input Bias Current (Pin 1)	V _{OUT} = 50V		10		μA
R _{IN}	Input Resistance		TBD	200		kΩ

ELECTRICAL CHARACTERISTICS ($V_{CC} = 12V$, $V_{DD} = 90V$, $T_{amb} = 25^{\circ}C$, unless otherwise specified)

Figure 1 : Measurement of Internal Reference Voltage

TYPICAL APPLICATION

The TDA9501 is composed of different parts :

- A differential amplifier, the gain of which is fixed by external feedback resistors ;
- An integrated voltage reference designed with a bandgap;
- A protection diode against CRT arc discharges.

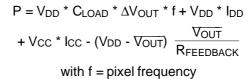
PC board lay-out

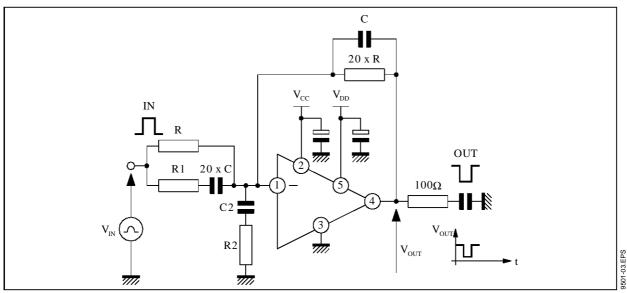
The best performances of the high voltage video amplifier will be obtained only with a carefully designed PC board. Output to input capacitances are of particular importance.

For a single amplifier, the input-output capacitance, in parallel with the relatively high feedback resistance, creates a pole in the closed-loop transfer function.

A low parasitic capacitance (0.3pF) feedback resistor and HF isolated printed wires are necessary.

Power dissipation


The power dissipation consists of a static part and a dynamic part. The static dissipation varies with the output voltage and the feedback resistor. The dynamic power dissipation increases with the pixel frequency.


For a signal frequency of 40MHz and $40V_{PP}$ output signal, the typical power dissipation is about 2.3W, for $V_{DD} = 90V$.

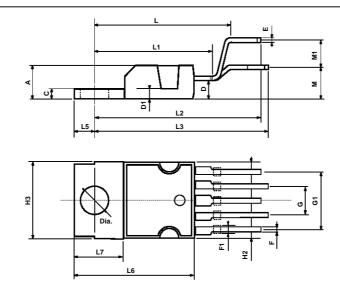
In first approximation, the dynamic dissipation is :

 $P_D = V_{DD} * C_{LOAD} * \Delta V_{OUT} * f$

and the total dissipation is :

R1 and R2 are in the range of some hundreds ohms.

C2 is in the range of some tens pF.


R is in the range of $1k\Omega$.

The DC feedback gain is from 15 to 30.

PM-PENTV.EPS

PACKAGE MECHANICAL DATA: 5 PINS - PLASTIC PENTAWATT

Dimensions	Millimeters				Inches	
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
A			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.8		1.05	0.031		0.041
F1	1		1.4	0.039		0.055
G		3.4		0.126	0.134	0.142
G1		6.8		0.260	0.268	0.276
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		17.85			0.703	
L1		15.75			0.620	
L2		21.4			0.843	
L3		22.5			0.886	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
М		4.5			0.177	
M1		4			0.157	
Dia	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

